Péter Major

نویسنده

  • Péter Major
چکیده

This paper discusses an interesting result of Lata la [3] about the tail behaviour of Gaussian polynomials. I found it useful to present a new, more detailed version of Lata la’s rather concise proof by putting emphasis on its main ideas. I applied several ideas of the original work, but introduced some different arguments as well. I tried to explain the method of the proof by discussing the picture behind its most important steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Péter Major MULTIPLE WIENER – ITÔ INTEGRALS with applications to limit theorems – Lecture

Chapter 1 We formulate the main problems discussed in this paper together with the most im-portant notions needed in their discussion. In particular, we introduce the notion ofgeneralized random fields and also explain at a heuristic level why their introduc-tion is useful for us. We finish this chapter with a sub-chapter that contains a shortsummary about some useful result...

متن کامل

Quantitative characterization of the activation steps of mannan-binding lectin (MBL)- associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of complement lectin pathway

Background: Autoactivation of initiator proteases of complement is a two-step process. Results: Autoactivation, and possible crossactivation steps of complement lectin pathway proteases were quantified. Conclusion: Only MASP-1 can autoactivate rapidly, and MASP-2 is activated by MASP-1. Significance: The determined kinetic data are helpful to interpret activation scenarios for the lectin pathwa...

متن کامل

Subwords in reverse-complement order

We examine finite words over an alphabet Γ = {

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011